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A MODEL FOR PREDICTING BIRD AND ICE
IMPACT LOADS ON STRUCTURES

SECTION 1
INTRODUCTION AND SUMMARY

1.1 BACKGROUND

Hail, ice sheets, and birds are periodically ingested into
aircraft engines during take-off, flight, and landing operations.
The resulting damage to aircraft components such as engine fan
blades and aircraft windshields can lead to destruction of the
aircraft and crew. One of the most serious threats, especia’iy
in high speed flight at low altitudes, is bird ingestion int the
engine. The elements of a jet engine which are most vulners
to impact of ice and birds [foieign object damage (FOD)] are .2
first-stage fan blades. Conventional jet engines currently
use sustain relatively minor damage with only rare occurrences of
catastrophic failure when birds or ice are ingested. The first
stages of these engines have "thick" titanium or stainless steel
blades and run at moderate rotational speeds (chiefly limited by
the strength-to-weight ratio of the blade materials). However,
advanced engines currently under development require thin blades
with sharp leading edges and high rotational speeds in order to
obtain high speed aerodynamic efficiency. Efforts to increase
the performance of conventional engines envision the use of
lightweight compdsite materials to achieve higher rotational fan
speeds and higher power-to-weight ratios. Both of these direc-
tions in fan jet engine evolution pose severe design problems for
the successful development of a new generation of FOD-resistant
fan blades.

Progress in the development of FOD-resistant fan blades
has been hindered by the lack of understanding of the mechanisms
of FOD failure, and the lack of a blade analysis tool capable of
predicting the response of a fan blade to ice and bird impact




loading. The recent development of sophisticated dynamic struc-
tural analysis programs based on the finite-element methodology
gives the fan blade designer the basic tool needed to determine
structural response due to impact loading. What is still required,
in order to use and capitalize on the power of these well-
developed finite-element computer codes for blade analysis, is a
physically correct and accurate model for the bird or ice impact
process.

This report describes the development of a bird and ice
impact loading model which is specifically designed to be used
with finite-element structural analysis computer codes. Two
recent developments from FOD investigations have provided the
information sorely needed to obtain a fundamental understanding
of the FOD impact process. The first, and most important, obser-
vation is that bird and ice impacts are primarily fluid dynamic
in nature and that viscous effects can be ignored. The second
observation, which is particularly important for modelling impacts
on fan blades, has to do with the cutting action of a blade during
the slicing of the impacting object by the leading edge of a blade.
It was observed that no significant loading is attributable to
the cutting action itself; that is,.the slicing force is pri-
marily due to the change in direction which the blade imparts to
the slice mass. This second observation basically means that the
entire impact process of a bird, hail, or slab of ice striking a
fan blade can be reasonably modelled by the methods of £luid
dynamic analysis without having to consider the tensile or

compressive strength of the impacting object.l

Because the model for bird and ice impact loading described
in this report is specifically designed to interface with finite
element transient structural analysis computer codes, the model
capitalizes on the fact that the impacted surface is fully
described mathematically in the structural analysis code at any
instant of time. This fact, coupled with the observation that
the impact process can be modelled as an ideal (non-viscous) fluid
flowing onto the blade surface suggests that the well-developed




methods of ideal fluid dynamic analysis (potential flow theory)
can be used to model FOD impacts and that, in particular, the
surface singularity method for solving complex potential flows is
the ideal tool to be used for the impact loading model.

This report describes how the surface singularity technique
is used to compute the loads exerted on a surface during FOD
impacts, and how this technique interfaces with the finite-element
structural analysis method. It should be mentioned here, at the
outset, that the FOD loading model described in this report is not
based on mathematically exact solutions to a well posed potential
flow problem. Rather, because of computer time and memory limi-
tations, only an approximate solution is obtained to model
equations. The equations only approximate the true fluid dynamic
event,

The overall model, while not stated or solved with exact
mathematical rigor, does include descriptions of the most impor-
tant physical phenomena associated with FOD impacts. These
physical phenomena include the following:

1. A true three-dimensional treatment of the impact

process is utilized.

2. The shape and size (i.e., geometry) of the slice mass
is computed.

3. The impacted surface shape is arbitrary and deformation
under load is congidered (i.e., coupling between the
loading process and target response is treated in a
physically meaningful manner).

4., Initiation, duration, and termination of the loading
process is described with separate descriptions used
for birds, ice spheres, and ice slabs.

In the remainder of Section I of this report, the approxima-
tions used in the formulation of the loading model are discussed
and justified. Section II describes the methods and analysis
used to generate a description of the slicing process and how the
slicing process is viewed and modelled for birds, ice spheres, and
ice slabs impacts. Section III of the report describes the surface

A




singularity technique and how it is applied in the loading model.
Section IV is basically a description of an FOD loading model
computer program, and how it is interfaced with the finite-element
structural analysis method.

1.2 FLUID DYNAMIC NATURE OF FOD IMPACTS

The impact of a bird or a slab of ice onto a jet engine fan
blade is a rather unusual impact prablem. It involves a number
of effects that are normally avoided in impact investigations.
Firstly, all bird and ice impacts on jet engine fan blades are
oblique. Obliquity has the effect of making the problem three-
dimensional. Only under very severe limitations ("spherical”
birds or ice and nondeforming targeté) can the process be reduced
to two dimensions. The rigorous analysis of most truly three-
dimensional impact events appears to be beyond the current state
of the art. The only analytic techniques which promise to be
capable of addressing general oblique impacts are finite dif-
ference methods. At the moment they are prohibitively expensive
and only moderately accurate. The second important effect in
bird and ice impacts with fan blades is that, in general, the
impact is a slicing, edge impact. This effect ensures three-
dimensionality, even under the assumptions which render obligue
impacts on a plane surface two dimensional. There appear to be
no proven, existing analytic techniques capable of rigorously
treating an oblique, slicing edge impact. The problem must be
treated with some degree of approximation. When compliant
targets are considered, the degree of approximation required
to obtain a solution increases. This section of the report
describes an approach to the solution of this problem which
incorporates rigorously the fluid dynamic nature of the impact
event.

1.2 that a material
- 1like gelatin with 10 percent porosity adequately simulates the
impact properties of real birds. The early efforts in the deve-
lopment of the substitute bird material for use in bird-impact
studies were reported by Allcock and Collin.2

It is known from several other studies

4
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wilbeckl theoretically and experimentally studied the

impact behavior of low-strength projectile materials which he
characterized as soft-body materials. These materials have a
much lower strength than that of typical target materials. An
%{ impact involving a projectile of soft-body material against a
target surface made of aluminum or steel generates stresses that
substantially exceed the strength of the projectile material but
are well below the strength of the target material.
3

Wilbeckl and Barber
that, unlike impacts involving projectiles of strong materials,
the impact of projectiles of soft-body materials is dominated by
the tendency of the projectile material to behave like a fluid
during the impact. Such soft-body materials include, in addition
to bird and substitute bird materials, ice in the form of hail or
ice sheets which break off the engine nacelle.

have established in their reports

It is useful to review here the rationale for considering
bird and ice impacts as fluid dynamic phenomena. Recognitiod of
this type of behavior greatly aids in the development of a
theoretical understanding of the impact process.

1.2.1 Observations Based on Experimental’Measurements

.

Wilbeckl treated the impact of a bird on a rigid
plate as an unsteady fluid dynamic process and developed a
simplified one-dimensional analysis of a homogeneous right-
circular cylinder of soft-body material impacting normally on a
! rigid plate. The analysis showed the entire impact process to
occur in four distinct phases. 1In the first phase, which is the
; initial impact phase, very high shock, or Hugoniot, pressures are
generated. He calculated this pressure, using the Hugoniot rela-
tion for a mixture, together with the shock properties of gelatin.
. The results of the peak pressure measurements for the impact of
right circular cylinders of gelatin with 10 percent porosity
reported by Barber, et a1.3 showed that the measured pressures
were in good agreement with the impact pressures calculated by
Wilbeck. More recent work by Bauer and Barber"s shows even
better agreement. This agreement in the initial phase of the




impact process indicates that the hydrodynamic description of the
event is well justified.

After the first phase, the high shock pressures
decay to steady fluid dynamic pressures. These pressures can be
calculated by considering the process as steady jet flow. This
theoretical conclusion is again in agreement with measured

steady-£flow pressures.l’3'5

Furthermore, the calculations of shock decay by
Wilbeckl have established that for a projectile with a length-
to-diameter ratio larger than a critical value, the shock will
be severely weakened by radial expansion waves and the projec-
tile should undergo complete shock decay to steady flow. Steady
flow would be expected to prevail if the length-to-diameter
ratio of the projectile in the direction of the impact exceeds
approximately unity. For real birds striking end-on, the
length-to-diameter ratio ranges from 2 to 3 and a steady-flow
regime should occur. This conclusion has been amply supported
by the measurements.l'3’5

Further evidence of the tendency of the projectile
material to flow radially outward at the impact location is
apparent during the steady-flow phase. As the radial pressures
decrease during the shock decay, shear stresses develop in the
projectile material. If the shear strength of the projectile
material is large enough to withstand these shear stresses, the
radial motion of the projectile will be impeded. On the other
hand, the projectile material will begin to flow if its shear
strength is smaller than the shear stresses developed. The
experiments have confirmed that for real birds, gelatin and ice,
the shear strength is low enough for the pressures generated to
cause the projectile material to flow.

1.2.2 Simplified Potential Flow Model and Comparisons

The absence of any entrainment of the surrounding
fluid (air) during the impact process led to the recognition




that the steady-flow phase of the bird impact would be ideally

suited for modeling by potential flow theory. This, in turn, led

to the development of a three-dimensional potential flow model3
for predicting the pressure distribution produced by the steady
flow of a cylindrical jet impacting obliquely on a flat plate.
The solution of the three-dimensional Lapiace's equation for a
steady, incompressible, irrotational flow was obtained by the
superposition of the two elementary solutions. These elemen-

tary solutions were the uniform flow of a fluid in a round duct,
and the uniform distribution of planar sources over the elliptical
area on the target defined by the intersections of the round duct

and the flat plate. The details of this procedure, which is an

elementary application of the surface singularity technique, are

described in Reference 3.

The predicted steady-flow pressure distribution
calculated showed very good agreement with the measured values
over the central portions of the jet flow.3 However, the
agreement was rather poor near the edges of the jet, and this
descrepancy was essentially due to the fact that the vorticity -
effects which are important at the edges of the jet are not
properly modelled by the simple superposition of two elementary
potential flow solutions. Nevertheless, the fact that this
simple model correctly predicted pressure distributions over
the major, and most important, region of the impact zone for a
wide range of impact angles further supports the concept that
bird and ice impacts are essentially ideal fluid flow in nature.

1.3 ASSUMPTIONS AND THEIR JUSTIFICATIONS

It is clear from the foregoing that the impact of soft-body
materials such as birds, realistic substiti:te bird materials like

gelatin, and ice at the typical velocities of impact may be
analyzed within the framework of hydrodynanmic theory. The
impact process is modelled in terms of normal and oblique
impact of a right circular cylinder against rigid and compliant
target surfaces. The theoretical analysis, of course, requires
several simplifying assumptions.




The projectile material is considered to be homogeneocus
even when large amounts of porosity are considered. This
assumption would appear to be somewhat unrealistic in the case
of real birds, although extensive test data do not indicate
gross inhomogeneties.3 The assumption is quite reasonable for
the substitute material (gelatin with 10 percent microballoon) and
ice.

In the analysis of the impact process, the strength of
the projectile material is considered to be negligible. This
assumption is reasonable for the typical projectile and target
materials of interest at the iqpact velocities of interest.

It is assumed that, at least as a first approximation, the
fluid flow may be treated as incompressible. This is a reasonable
assumption in view of the fact that the measured steady-state
pressures are quite small in comparison to the pressures required
to produce significant density changes in water.

In modeling the steady-flow phase by potential flow anal-
ysis, it is assumed that the flow is inviscid and irrotational.
Since the impact process does not entail any entrainment of the
surrounding fluid, and since the time over which steady flow
exists is small compared to the time required to establish strong
vorticity in the flow, it seems reasonable to treat the flow
field as effectively irrotational, at least over the central
portion of the jet. However, the fact that this simplification
fails to model adequately the edges of the jet is well-recognized.

It must be noted that the presence of a significant amount
of porosity in birds results in a very low sonic velocity (of the
order of 40 m/s for gelatin with 10 percent porosity). Then, for
the typical velocities at which bird impact occurs, the initial
impact process will be largely supersonic. Thus, while the
shock wave is weakened by the release waves and is ultimately
eliminated for a subsonic impact, it will not disappear for a
supersonic impact. The shock propagation velocity will decrease
until it becomes equal to the impact velocity, then a standing shock
will be established. Behind this shock the flow will be subsonic




and will follow steady flow streamlines. Wilbeck's calculations™,
based upon potential flow theory for a supersonic bird impact at
normal incidence, show that the steady-flow pressure at the
center of impact is almost independent of porosity, suggesting
that the decrease in density due to porosity is offset by the
increase in compressibility.

1.4 SUMMARY DESCRIPTION OF LOADING MODEL

If the target deforms locally during the impact, as well
as translating and rotating, then a loading model capable of
generating the local distribution of loading pressures during
the impact is required. As described previously, birds behave
like a fluid during impact and the distribution of surface
pressure during impact ié directly related to the fluid nature
of the event. To successfully predict the surface pressure
distributions on deforming surfaces, it is necessary to utilize
a fundamental fluid dynamic approach. The shear stress distribu-~
tions, due to boundary layer (viscous) effects can safely be
ignored for both normal and oblique impacts since the ratio of
maximum normal stress (pressure) to maximum shear stress is of
the order of one over the skin friction coefficient. Therefore,
the problem is reduced to determining the pressure distribution
over the impact area.

If the event is assumed to be dominated by the quasi-steady
flow portions of the impact, as described previously, the process
can be thought of as the flow of a jet onto a surface as illustrated
in Figure 1. (Shock effects, if demonstrated to be important, can
be evaluated separately and superimposed on the quasi-steady
flow results.)

The characteristic (and maximum) pressure in quasi-steady
fluid flow is the Bernoullian stagnation pressure (1/2 pv,z)
and the important independent parameters are the impactor density,
f, and the impact velocity, Vy. The loads are specified if the
stagnation pressure and pressure coefficient distribution can be
determined. As pointed out previously, porosity (of birds) has
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Figure 1. Oblique Impact

little effect on the stagnation pressure. The zero porosity
density (90g) and incompressible flow assumptions can, therefore,
be applied. Thus, the problem is reduced to the classical
hydrodynamic problem of the flow of a liquid jet onto a surface.
The problem can be further simplified by making the assumption

of irrotational flow: an assumption which is supported by the
fact that in the impact region fluid inertia forces dominate over
viscous forces. With the assumptions of steady, incompressible,
irrotational flow, the problem may be treated as a steady, poten-
tial flow described by Laplace's equation. A serious complication
remains however. The boundary of the jet is a free streanmline
whose position is not known "a priori." The static pressure is
continuous across a free streamline while the velocity tangent

to this streamline and the stagnation pressure are both discon-
tinuous. Along a free streamline, the magnitude of the velocity
is constant according to Bernoulli's equation. Thus, even though

10




the governing partial differential equation (Laplace's equation)
is linear, the free streamline boundary condition is nonlinear.
These conditions can be described, in two-dimensional flows, with
complex variable theory and exact analytical solutions, and have
been obtained, for two-dimensional jets impacting on flat surfaces.
However, no three-dimensional jet impact flows (such as those of
interest here) have been solved analytically. Not even the case
of an axisymmetric (circular) jet impacting normal to a flat
plate has been solved, because complex variable theory becomes
extremely cumbersome in cylindrical coordinate systems.s Approx-
imate analytical solutions are available for predicting the
pressure distribution for circular jets impacting normal to flat
plates.1’7'8 Reference 8 contains semi-gmpirical expressions and
techniques for computing pressure distributions for cylindrical
jets impacting obligquely on flat surfaces. The general problem
of a jet of an arbitrary cross section impacting on an arbitrary
surface can only be solved by numerical methods.

Numerical potential flow solutions for jets (jets bounded
by free streamlines) are very difficult to obtain because the
location of the free streamlines are not, in general, known.

For circular jets, at normal incidence, the position of the free
streamlines can be adequately assumed in order to start a
solution. For oblique impacts, particularly on curved surfaces,
assuming the free streamline position would be a major under-
taking in addition to the considerable task of numerically
solving Laplace's equation in three dimensions. Accordingly,

an approximate numerical solution which would provide a reason-
ably accurate description of the pressure distribution (but not
necessarily satisfying the free streamline condition) was
developed.

Three-dimensional potential flow theory was used to develop
a model for predicting the pressure distribution produced by the
steady flow of a cylindrical jet impacting on a flat plate. It
was assumed that pressure distribution, as calculated for this
fluid dynamic problem, would provide a reasonable description
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of the steady flow portion of a bird impact. Incompressible,
irrotational flow assumptions were made, but the free streamline
boundary condition was not imposed, The method of superposition
of solutions was used even though superposition is not strictly
valid (although Laplace's equation is linear, the free stream
boundary condition is nonlinear). The numerical approach used
was based on the method of surface singularities.4

The approximate numerical solution involved the super-
position of two elementary solutions to Laplace's equation.
The two solutions used were: (1) the uniform flow of a f£luid
in an infinite jet of arbitrary but constant cross-sectional
area; and (2) the uniform distribution of planar fluid sources
over the impact area. The velocity of the fluid within the
infinite jet was considered constant, while the fluid outside
this region was assumed to be at rest. Surface sources were
distributed on the target surface. The strength of the surface
sources was selected to provide the correct boundary condition
at the target (no flow normal to the target surfaée). The
complete solution to this problem for jets of circular cross
sections impacting obliquely on rigid flat surfaces was devel-
oped by Boehman of the University of Dayton and is presented
in Reference 3. ’

This model can be used for any arbitrarily shaped impact
surface. The impact area is divided into small flat elements,
and a uniform distribution of sources is assumed to cover each
element. During the analysis of an impact, in which local target
deformation takes place, the deformed target shape in the impact
zone is calculated at each time interval employed in the dynamic
structural analysis. The geometry of the impact zone can then
be provided at each time interval to the loading model, and the
pressure distribution appropriate to the target at that time can
be determined. As the structural analysis calculation proceeds,
the local shape, location, and velocity of the impact area is up-
dated and made available to the loading model. The loading model,
in turn, prevides updated pressure and pressure distribution
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information for the structural response computation. The loading
model is, thus, fully interactive with the structural response
calculation. The duration of the impact is computed by computing
the amount of slice consumed as a function of time and setting
surface pressures equal to zero after the slice is consumed.

The loading model is capable of detailed interaction with
the structural response model and is capable of dealing with
target translation, rotation, and local deformation. The load/
response coupling modelled in this formulation should be capable
of accurate prediction of pressure for both overall target
response and local deformation,

The principal limitation of the loading model is that
it does not include transient effects. The most significant
transient effect is the shock process. However, the porosity
present in birds appreciably reduces the shock stresses, while
the steady flow pressures are not significantly affected. 1In
addition, impact obliquity (bird-blade impacts are, in general,
obligque) also reduces the relative importance of shock stresses.
Therefore, it is not obvious that neglect of the shock aspects
of bird impact on blades is a significant deficiency. Another
transient aspect of ice sphere impacts is the variation of a
slice cross-sectional area at the target surface during impact.
This results mainly in a time variation of the impact area. 1If
the flow remains quasi-steady during these variations (i.e.,
the "velocity®” of the variation is low with respect to local
sound speed; probably a good assumption), then the model can be
modified to describe these effects. The size and geometry of
the "jet" which flows onto the target surface must be updated
in time incrementally to describe the variation of impact area
with time.

1.5 SUMMARY

In the current version of the loading model, the pressure
distribution is based on a steady flow analysis. This method
of analysis is extended into a dynamic analysis for deforming
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targets by treating the flow at any instant of time as a quasi-
steady flow using the instantaneous relative velocity between
the bird slice and the deforming target as the characteristic
velocity. The instantaneous shape of the target is used to
define the surface on which impact occurs.

In the analysis of the impact process, the strength of
the projectile material is considered to be negligible. This
assumption is quite reasonable for the typical projectile and
target materials of interest.

It is assumed that, at least as a first approximation, the
£luid flow may be treated to be incompressible. This is a
reasonable assumption in view of the fact that the measured
steady-state pressures are quite small in comparison to the
pressures required to produce significant density changes in
birds or ice.

By virtue of the incompressible flow and steady flow
assumptions, together with negligible strength of the projectile
material, the problem of predicting soft body impact loads is
amenable to analysis within the following real constraints.

The time required to obtain a reasonable solution must be small
in comparison to the time required to compute the structural
response, and the computer storage requirement for the loa ing
model must be small in comparison to the structural analysis
computer program storage requirements.

Three~dimensional potential flow theory was chosen as the
most appropriate method for modelling the impact process. Our
initial work in using this approach was quite successful.3 In
Reference 3, the method of surface singularities was used to
determine the velocity and pressure fields due to circular jets
impacting at oblique angles on flat rigid plates. This same
technique was used to develop the loading model described in
this report. The method developed in Reference 3 was generalized
to include impact surface curvature and deformation velocity,
arbitrary cross-sectional area of the impacting flow, and a
method for generating planar quadrilateral surface elements
given f£inite-element surface nodal point locations,

14
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SECTION 2

DISCUSSION OF BIRD AND ICE IMPACT
ON MOVING AND STATIONARY BLADES

; While the discussion in the previous section dealt largely
with the modeling of the soft-body impacts on surfaces (bird-
strike on aircraft windshield, for example), the other area of
major concern in the study of these impacts is the ingestion of
foreign bodies in jet engines resulting in impacts on fan or
compressor blading. Typically, this problem might arise from
the ingestion of a bird or of ice sheets breaking off the
nacelle. The primary consequences of such impact would be
deflection, bending, and rupture of the impacted blades. Although
this can give rise to secondary impacts and related effects, the
present research program is confined only to the primary foreign
object/blade impacts. It is useful to point out that while the
subsequent discussion might explicitly deal with the bird/blade
impact process, the analysis and the conclusions herein are not
restricted to bird impact alone but apply to any foreign body
impact (it is assumed, of course, that we would still be con-
sidering only "soft-body" materials).

Jp—

The bird/blade impact process differs in an essential way
from the earlier-discussed bird impact over extended surfaces.
Unlike the bird striking an aircraft windshield, for instance, a
bird entering an engine is cut into slices by the chopping action
of the first-~stage fan blades. Thus, before one proceeds with
the analysis of the impact process, it is necessary to first
! establish the geometry and parameters of the slices of bird, or
ice, formed by a rotating fan stage.

2.1 SLICING MODEL DEVELOPMENT

During 1976 a few experiments were conducted at the Air
Force Materials Laboratory by the University of Dayton Research
Institute to investigate the effects of slicing edge impacts
on the impact loads. Birds were fired over thin wedges and
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cylindrical wires mounted in a ballistic pendulum. From

measurements of the momentum transfer during the slicing process,
estimates of the slicing force could be made. It was found that
the slicing force was predominantly due to fluid dynamic drag
with no significant loading attributable to the cutting action
itself. These experiments suggest that it is reasonable to
ignore the cutting forces in comparison to the forces required
to decelerate and/or change the direction of an impacting soft
body. Therefore, the slicing model development reduces to
simply a geometric problem of determining the dimensions and
weight of a slice., For birds and ice spheres (such as hail)

the velocity of the ingested object is small compared to the
velocity of the aircraft; thus, the object velocity can be
ignored. For ice slabs, such as ice breaking loose from an
engine nacelle, the velocity of the slab relative to the nacelle
is not well defined. A reasonable assumption, at least for short
inlet systems, is to ignore the velocity of the slab relative to
the nacelle. For long inlet systems, it might be possible to
estimate the relative velocity between slab and nacelles by
considering the action of aerodynamic drag forces on an ice

slab after it has broken loose from a forward section of a
nacelle.

2.1.1 Slicing Model Development for Birds

A bird is idealized as a right, circular cylinder
with a length-to-diameter ratio of 2 and the velocity of the
bird, relative to the aircraft, is taken to be equal and opposite
to the aircraft velocity.

In the following analysis, a coordinate system
attached to the blade is used. The bird/blade interaction
geometry, in such a coordinate system, is shown in Figure 2. The
following information is assumed to be known (supplied as input
data to the loading model computer program):

N - number of blades per stage

n « blade rotational speed (rpm)
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2. - distance from the rotational axis of the
rotor to the point on the blade at which
the center of the impact occurs

§ - blade orientation angle (defined as the
angle § in Figure 1)

V,, - axial velocity of the bird

W, - bird weight

Py = bird density.

An infinite number of slice shapes is possible
for a given set of these input parameters; the shape depends on
the orientation of the bird relative to the blade, and on the
span location on the blade at which the impact occurs. Since
worst case sSlice shapes are desired (i.e., slice shapes having
. the largest possible slice mass), the orientation of the axis
of the bird and the center of impact of a slice are chosen to
produce a slice having the largest possible mass. The largest
slice mass occurs when the axis of the slice is coincident with
the axis of the right circular cylinder. The slice geometry
depicted in Figure 2 corresponds to this worst case situation.

With the bird idealized as a right circular
cylinder with L = 2D, the diameter of the bird is determined
from the bird weight and density as

2Wb 1/3
D'?—' (1)
pb

The tangential velocity of the bird Ve is computed
at the impact radius Z; and is given by

2tnz.

——
V. = 60 (2)

and the magnitude of the velocity of the bird relative to the
blade Ve is given by

2

2
Vr -b&vb + Vt ) (3)
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The direction of V,_ relative to the plane of
rotation of the blade 8 at the impact location Zi is i

B = sin'l(vb/vr) . (4)

Ve is assumed to have no component in the radial direction. The ﬁ

impact angle, defined as § in Figure 2 is

6 = § -8 (5)

and the blade spacing (defined as zi and denoted by S in
Figure 2) is given by -

S = Zﬂ'zi/N . (6)
The bird slice width, h, is then given by
szi Vb

h = SSinB' T v (7)
r

Referring to Figure 2 we find that the bird-slice weight is

given by
’ +h/2
p\? _ .2
wsb - pr 2 ("2') - § ag
-h/2
2 2 2 -1/h
e W@ 3ot )]

The use of Equations 2 and 3 in Equation 7 shows
that the bird-slice width at any impact radius depends only on
the blade parameters, N and n, and on the aircraft speed. The
bird-slice weight at any impact radius depends, in addition to
the above three parameters, only on the density and total
weight of the bird.

If h/sin g is greater than the cord of the blade
at z;, then not all of the slice will impact on the blade.

2.1.2 Slicing Model for Ice Spheres

For ice spheres (such as hail) the axial velocity
of the sphere relative to the blade is taken to be equal and
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opposite to the aircraft velocity, just as for birds. The same

expressions for slice width impingement angle, and Ve applies
. ’

as for birds. The slice weight WSi is given by

h/2 :
Weyg = znpiof[(g)z ) gz]dE
o iags = 210, [9)°3) - 3]

where -‘5‘- = -g-

and Y is the ice density. For ice spheres it is presumed that
the diameter of the sphere is a specified quantity along with
the ice density.

2.1.3 Slicing Model for Ice Slab

For slabs of ice the operator specified information
is presumed to be the length of the slab, L, the thickness of the
slab, 42, (i.e., how much of the blade span is to be exposed to
the slab) and the axial velocity of the slab relative to the
nacelle (this replaces Vb in Equations 3, 4, and 7). The slice
width, h, is again given by Equation 7 with Vp replaced by the
axial velocity of the slab relative to the nacelle, The slice
mass is then given by

Weg = Py (h){A2)L (10)

2.2 BIRD SLICE GEOMETRY PARAMETRIC STUDY RESULTS

Using the equations Aeveloped in paragraph 2.1.2, the bird-
slice parameters were computed for both starling impacts (3-ounce
birds) and big bird impacts (l.5-pound birds). Three different
blade configurations, viz., J=-79, APSI, and F-10l, are considered
and typical values of the rotor speed, number of blades per stage,
blade orientation angle, and impact radius are used. The input
parameters and the computed quantities are shown for the two cases

[P U
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of bird weights in Tables I and II. The primary observation from
this parametric study is that bird (and ice sphere) impacts are
highly oblique.

2.3 DURATION OF IMPACT

The amount of a slice consumed at any time during impact
is directly related to the velocity of the slice relative to
the blade (Vr in Figure 1).
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SECTION 3
POTENTIAL FLOW MODELING OF FOD IMPACTS

The impact of a soft body material (bird or ice slices) on
a single blade is modelled using a well developed method of
potential flow theory known as the surface singularity method.
The procedure used to apply the method of surface singularities
to FOD impact is based largely on the work of Hess and Smith."9

3.1 GENERAL DESCRIPTION OF THE SURFACE SINGULARITY METHOD

The method of surface singularities has its origin in a
well-known theorem of potential flow theory which, in essence,
states that if the velocity potential or its derivative is
known over the entire boundary of a potential flow, then the
velocity field may be determined throughéut the region of the
flow.6 With this theorem, and with the :id of Green's theorem,
Green's equivalent stratum of sources and doublets (singularities)
is developed. This stratum essentially states that the velocity
potential of a fluid in motion can be expressed in terms of
either a distribution of sources and/or doublets over the flow
boundary.6 For nonlifting potential flows, only source distri-
butions need be considered whereas doublet distributions are
required for analysis of lifting potential flows.lo Source
distributions are considerably easier to implement and, based
upon the good results obtained in our preliminary work using
source distributions,3 only source distributions are used in
the model described in this report. The method of surface
singularities as used in the FOD impact model utilizes a distri-
bution of source density on the boundaries of the flow, and
solves for the distribution of source density necessary to
satisfy specified boundary conditions. Once the source density
distribution is known, the flow velocities on the boundaries of
the flow field and throughout the flow field can be computed.

In order to understand the method of surface singularities,
consider a steady flow of a perfect fluid impinging on a three-
dimensional body as shown in Figure 3. In the initial discussion
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Figure 3. A Three-Dimensional Flow Field

of the method, the steady flow will be considered to be infinite
in extent. The modifications required to adapt the method to
flows of finite extent such as jet flows will be discussed later.

3.1.1 Surface Singularity for Flows of Infinite Extent

Let S be the surface of the body and have an 5
{ equation of the form

F(x, vy, 2) = 0 (1l1)

' where x, ¥y, and z are the Cartesian coordinates. For simplicity
' assume that the onset flow (defined as the flow field) is a uni-
o form stream of unit magnitude, and let it be denoted by the constant
vector i,with components v.x, v,y, and V.z, respectively, along
the coordinates axes x, y, and z where;

v, -\ﬁ.xz + v,,y2 vl =1 (12)
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The' fluid velocity at a point may be expressed as
the negative gradient of a potential function ¢. Which satisfies

Laplace's Equation in the region R' exterior to the surface S,
has a zero normal derivative on S, and approaches the proper
uniform stream potential at infinity. Making use of the super-
position principle, the potential function ¢ is viewed as

@ =+ 0 (13)

where ¢, is the uniform stream potential and is equal to
P = =(Vgux + V.yy + Vop2) (14)

and ¢ is the disturbance potential due to the body. Then ¢
should satisfy

4 = 0 in R (15)

a_ﬂ =R - grad¢ ] ?l . V.i (16)
Ing F=0 P=0

¢+-0 for xz + yz + zz* P (17)

where A denotes the Laplacian operator and % is the unit outward
normal vector at a point of the surface,

From potential theory, it can be shown that this
potential may be evaluated in terms of a surface source density
distribution with which the body surface may be considered to
be covetod.6 Then ¢ may be written as

o
é (x,¥,2) -#' il as (18)

where r(p,q) is the distance from the integration point, g, on
the surface to the field point, p, where the potential is being
evaluated as shown in PFPigure 4. The function ¢ must be deter-
mined so that ¢ satisfies the normal derivative condition,

Equation 16. On the body surface the normal derivative of ¢ is

d 1 :
]
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Figure 4. Notation used in Describing the Potential Due to a
Surface Source Density Distribution

Substituting the value of 3¢

s in Equation 16 gives the integral

equation for o as

d 1 = -n(p)* %
2mwo(p) -#-' R(FW (q)ds n(p)* Ve (20)

This is seen to be a two-dimensional Fredholm integral.equation
of the second kind over the surface, S. Once this equation is
solved for 0, the disturbance potential ¢ may be evaluated from
Equation 18 and the disturbance flow velocities from the deriva-
tives of Equation 19 in the coordinate directions.

Some advantages of this method are: the equation
that must be solved is a two-dimensional one over the body sur-
face rather than a three-dimensional one over the entire exterior
flow field, and the method can be used to calculate flows about
arbitrary bodies. There is no restriction that the body be
slender, analytic, or simply, connected or that the disturbance
velocities due to the body be small compared with the velocity
of the onset flow. However, it is required that the body sur-
face have a continuous normal vector f. ]
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27

. 1-4
iuitni e sitac ot A ——— mha—— -




3.1.2 Complications of Flow of Finite Extent

For flows of finite extent, such as jet flows,
obtaining an exact solution requires that the boundary stream-
lines of the flow must be included as part of the flow surface,
S, over which sources are distributed. The addition of this
surface poses severe complications. As was mentioned in para-
graph 1.4, the position of the boundary streamline of the jet is
unknown. Furthermore, the jet surface streamlines are a special
type of streamline known as free streamlines along which the
nagnitudes of the velocity is constant., The difficulties which
the presence of a free streamline causes in attempting to obtain
exact numerical or analytical solutions were discussed in para-
graph 1.4. Because of the very real computer time and computer
storage limitations that had to be considered in the development
of the present model, it was not feasible to attempt an exact
numerical solution. Fortunately, reasonably accurate pressure
distributions can be obtained with the surface singularity method
without attempting to satisfy the free streamline boundary con-
dition exactly. This is accomplished by use of a suitable model
for the onset flow. Thus, in the FOD loading model discussed in
this report, sources are distributed only over the surface on
which the impact occurs. The model thus utilizes the same basic
procedure as that described in paragraph 3.1.1 for flows of
infinite extent, except that the onset flow velocity distribution
is now not a constant velocity field but is a spatially varying
velocity field. As is shown in Reference 3, even the simplest
possible onset flow model, which has a uniform distribution of
velocity over the cross sectional area of the impacting object
and zero velocity everywhere else, gives surprisingly good
results.

3.2 DETAILED DESCRIPTION OF THE COMPUTATIONAL PROGRAM

In this section, a detailed description of the computer
program used to solve for the source density distribution, the
disturbance potential, and the disturbance flow velocities along
with their analytical equations are presented.
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3.2.1 The Body Surface Approximation

To allow arbitrary bodies to be considered, it is
required that the body surface be specified by a set of points
in space called input points. Then the body surfacc is approxi-
mated by a large number of small plane gquadrilateral elements.
These elements are formed from the original points defining the
body surface as shown in Figure 5,

In the original application of the surface singu-
larity method to FOD impacts3’ rectangular surface elements were
used. However, in the development of that model no attempt was
made to interface it with a finite element structural analysis
program, and the impact surface was flat and assumed to be rigid.
Thus, rectangular elements were preferred due to their computational
simplicity. 1In that model, the coordinates of the center of each
element, and the lengths of the long and short sides, were read in
as input data. The present model is designed specifically to be
interfaced with finite element structural analysis computer

Figure 5. The Approximate Representation of the Body Surface

“‘ Rliisinaisiv cwmatsh &=

T DS RO P DY SOV A LA R REUT VLN PRI PR PRC R es ¥ L e e v




programs and is designed to handle impacts on arbitrarily curved
surfaces. Quadrilateral elements provide a better approximation
to an arbitrarily curved surface than rectangular elements and
are much easier to construct from the finite element represen-
tation of a curved surface. 1In the model, it is required that the
coordinates of all nodal points on the impacted surface be
supplied to the loading model. Specifically, the nodal points
in the finite-element program become approximate locations of
the null point (defined to be the point where the quadrilateral
element induces no velocity in its own plane) around which the
plane quadrilateral elements are constructed in the potential
flow analysis. This greatly facilitates the coupling of the
finite~difference loading model and the finite-element struc-
tural code. Null points are the points at which, with the least
amcunt of computational effort and with the greatest accuracy,
the surface pressures can be computed in the loading model. The
surface nodal locations are the points where the finite element
structural code requires the surface loads to be defined.

Input to the loading model consists of the coordi-

nates of the set of finite element nodal points defining the
surface of the impacted object. These coordinates are given in
the reference coordinate system, that is, the coordinate system
used to describe the shape of the impacted surface before impact
occurs. Each nodal point is identified by a pair of integers, m
ard n, where n identifies the column of points to which it belongs
and m defines its position in the column. For a fan blade analysis
the undeformed blade is imagined first to be cut into (NS-l1) strips
by NS cuts (n-lines) proceeding from root to tip with these cuts
orientated basically along chord l.:nes. Then the blade is cut

into (NC-1l) strips by NC cuts (m-lines) proceeding from the

leading edge to trailing edge. The integer n thus ranges from 1

to NS, and the integer m ranges from 1 to NC. The intersections

of these cuts define the initial position of the surface nodal
points (before impact).
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Quadrilateral elements are computed from groups of
four neighboring nodal points which, for nonflat surfaces, do

not generally lie in a plane, Consider a nodal point identified
by (m,n) which is not on the first or last m or n lines (boundary
lines). Nodal points lying on boundary lines require special
treatment which is discussed later in this section. The first
step in defining a quadrilateral is to locate four points around
the nodal point (m,n) which can be thought of as "corner" points
for a surface with four edges but which, in general, will not be a
plane quadrilateral. These four "corner" points are located
midway along each of four vectors connecting the nodal point
(m,n) with nodal points (m=-l,n-l), (m+l,n-l), (m+l,n+l), and
{(m-1,n+l). These points are labeled 1, 2, 3, and 4 respectively
as shown in Figure 6 and will hereafter be called mid-node
points. The coordinates of the mid-node points are:

9 surface node
Finite Elements

* denotes midway point
on vector connecting
node (m,n) with &
neighboring node

Figure 6. Nodal Numbering System and Mid-Node Point Formulation
And Numbering
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l: Xy0r ¥y Zl
22 Xyr ¥y, Z,
3: X3, Yy, Z4
4: x4, Y

4'

It should be noted that once a mid-node point is
defined for one element, it can be used in the formation of up
to three neighboring elements. Therefore, it is not necessary
to actually construct all four vectors shown in Pigure 6 for
each nodal point.

Nodal points lying on boundary lines obviously do
not have four neighboring nodal points. For nodal points on the
leading edge of the blade (m=1), the node point is not used as
the null point. For these points mid-node points 1 and 4
corresponding to node point (2,n) are used to define mid-node
points 2 and 3 for the (1l,n) leading edge node point. "Corner®
points 1 and 4 are defined by projecting half the distance to
neighboring leading edge node points if they exist. 1If they do
not exist [nodes (l1,1) and (1,NS)], then they are artificially
generated by projecting off the blade along the leading edge by
a distance equal to one-half the distance to the leading edge
neighbor which does exist.

Mid-node points for nodes lying on the other three
boundary liries are formed from those mid-node points which they
share with other nodal points. Any missing "corner®” points are
formed by projecting off the surface of the blade by an amount
which does not exceed one half the distance to its nearest
neighboring nodal points.

3.2.2 Formation of the Plane Quadrilateral Surface Element

The plane quadrilateral surface elements are formed
from the four appropriate mid-node points as follows. First the
Ewo "diagonal®™ vectors 61 and 52
Tl goes from 1 to 3 and vector fz goes from 2 to 4. In general,
these vectors are not orthogonal and do not intersect. Their

components are:

are formed (Figure 7)., Vector
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Figure 7. Formation of an Element From Four Mid-Node Points

(21)

The cross product, N, of these vectors divided by its own length
is taken as the unit normal vector, n, to the plane of the element.

-y
N=%F x7% (22)
The components of N are:

Ne = ToyTiz = T1yT22

- 23
Ny = TleZz TZlez (23)
N = TaxTiy = T1xTay

The components of the unit normal vector n are:

=X
N
N
Y (24)
n = -
Y N
Y.
N
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A2 2 2 7
where N \/Nx * NS+ N, (25)

To completely specify the plane of the element a point in the
plane is also required. This point is taken as the point whose

coordinates f, ?, 2 are the averages of the coordinates of the
four mid-node points, i.e.,

X= %-(x1 + Xy + Xy + X))

7 = %(!1 Yy 4+ Y+ Yy (26)

1
T =2 + 2, + 23+ 3

Now the mid-node points will be projected into the plane of the
element along the normal vector. The resulting points are the
corner points of the plane quadrilateral source element and

these, rather than the mid-node points, are the points used in all
calculations. The signed distance of the k-th mid-node point
(k=1,2,3,4) from the plane is

d, = nx(i - %) + ny(? - Y + nz(i - %) (27)

and the coordinates of the corner points in the reference coor-
dinate system are given by

xk = xk + nxdk
1
*

zk = zk + nzdk

3.2.3 Formation of the Element Coordinate System

It is convenient to derive and to use the formulas
for the velocities induced by a quadrilateral source element of
uniform strength at points in space assuming the element to lie

in a coordinate plane. This necessitates constructing a coordi-
nate system having two of its axes in the plane of the element.
Thus, three mutually perpendicular unit vectors are required, two
of which are in the plane of the element and one of which is
normal to it.




The unit normal vector is taken as one of the unit
vectors, and the unit vectors in the plane of the element are f
denoted by Ei and Ez. El is taken as fl divided by its own
length, i.e.,

i1
T
1

where

2 3 2
ERVENCE Tiy * Tiz (30)

- >

The vector E; is defined by ., =nx 31, so that its components are:
Eax = Myt1z ~ M2ty
t2y = Natix T Pxt1z (31)

B2z = Oxtiy = Bytix

To transform the coordinates of points and the ; |
components of vectors between the reference coordinate system :
and the element coordinate system, the transformation matrix is ;
required. ? 1
The elements of this matrix are the components of

-

the three basic unit vectors, Ei, € n.

o oAy dm i Sy b

The transformation matrix is thus the array

a1 *fi1x 32" %y 23" %)
87 " By 3 "ty 33 7ty (32)
331 " Ny 832 " Ny 233 = Ny

To transform the coordinates of points from one
system to the other, the coordinates of the origin of the ele-
ment coordinate system in the reference coordinate system are

35




required; let these be denoted xo' Yo"zo' Then, if a point has

' in the reference coordinate system and

coordinates x', ¥', 2
coordinates X, Y, Z in the element coordinate system, the
transformation from the reference to the element system is

L] ] ]

X = all(x -xo) + alz(Y -YO) + a13(z -zo)
1 ] t

Y = a21(x -xo) + azz(Y -Yo) + 323(2 -zo) (33)
] ] ]

Z = a3l(x -xo) + a32(Y -Yo) + a33(z -z°)

while the transformation from the element to the reference system
is

]
X = xo + allx + a21Y + a3lz

Y = Yo + a;,X + 25,7 + 25,2 (34)
L

2 = zo + al3x + az3Y + a33z

The origin is temporarily taken as the point whose coordinates
are the averages of the four mid-node points, i.e., the point
with coordinates X, ¥, 7 in the reference system , and is used to
£ind the coordinates of the centroid of the area (Figure 8), 1

The corner points are transformed into the element coor-
dinate system based on the average point as origin. Their coor-
dinates in the element coordinate system are denote by Ek*, nk*, 0.
Because they lie in the plane of the element, they have a zero?d

coordinate in the element coordinate system. Using the above
transformation these coordinates are:

Ex” = a;;(X,-%) + a;, (¥ =T) + a;3(2,-7)

- - - (35)
k" = 2y (X =K) + ay, (Y -Y) + ay3(2y-7)
The origin of the element coordinate system is now transferred to } h
[ the centroid of the area of the quadrilateral. With the average
f point as origin, the coordinates of the centroid in the element
coordinate system are:4
£_l I £ *mn.* - i)+ » * * {36)
¢TI AT ML T M) 2 mg =)

170. .- %’7’1*
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Figure 8. A Plane Quadrilateral Element, Transfer of Origin from
Average Point to the Centroid

These are subtracted from the coordinates of the corner points in
the element coordinate system based on the average point as ori-
gin to obtain the coordinates of the corner points in the element
coordinate system based on the centroid or origin, i.e.,

€x 'fk. €0

N k=1,2,3,4 (37)

Since the centroid is to be used as the origin of the elenentc
coordinate system, its coordinates in the reference coordinate
system are required for use with the transformation matrix.
These coordinates are:

Xo = X+ a3 {, + aym,
Yo = Y + alzfo + azzno (38)

o =2 +a{, +a,




3.2.4 Determination of Null Point

It is necessary to select a particular point on
each quadrilateral element where the normal velocity will be
required to vanish and where the flow velocities will be computed.
This point is taken as the point where the quadrilateral induces
no velocity in its own plane, It is designated the null point,
The x and. y coordinates of this point, in the element coordinate
system, are obtained as the solution of two simultaneous, non-
linear equations. These equations are

Ve(X,Y) =0

(39)
Vy(XpY) = 0

where Ve and Vy are the velocity components induced by a
quadrilateral source element of unit source density. They are
derived from the fundamental potential function. The general

equations of the induced velocity components are:4
VvV = ’72-77110 rl+r2.d12 3 172 cg _::3_?129.
x  dy, T e, | T Ty rotra+dsyg
e s (40)
. ”4'"5109 Tytry—dqy, . 171"74109"'4"1“‘41
dig Ty+r,+dqy, dsy Tate tdy,
v e1’52log F1tramdia ), Ez’salog F2*r37d23
Yy dj, T +Ep+d; g CP T, +T3+d,5
' (41)
€3-§4 rytrg=d3g\  €4-&; 4*¥ry1=d4;
+ log +r ,+d M d log r,+r,+d
34 Fa¥r4*d34 41 47T
™, ~2,~h m,.€.=~h
v = vap~d{mr28171) _ . -1{T12%2772
4 Zrl Zrz
m 4@, -h
v tan- ( 2392 2) ( 23: 3)
3 (42)

i1} m -h
34%3° 3 34%47%4
v tan- ( = ) ( - )

m,,e,.=h
+ tan” (—i%-i-——> - tan” ( 4;r1 l)
1l
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where dl2 = J(ez _gl)z + (1,2 - ,,1)2
(43)
T T J(ﬁ =637 + 9y =932
d4l - J(el '{4)2 + (ﬂl '1)4)2
where
: n 772 "71 '73 "72
12 ¢,-¢, 2 £3-¢,
(44)
774 ""73 ’71 "'74
m = z—-—z— m =
and
and
e, =22 + (x =& 2 k=1,2,3,4 (46)
hy = (¥ =T (X =&,) k=1,2,3,4 (47)

with 2 = 0 and Ek' N set equal to the coordinates of the corner
points, which were obtained in the previous section, these
equations are solved by means of an iterative procedure, which
utilizes analytic expression for the derivatives cf Ve and Vy.
With the notation ( )x = 3/3x, ( )y - 3/3Y, the iterative proce-
dure is as follows. Let xp and Yp denote the p-th approximation
to the X and Y coordinates of the null point and let the notation
{ ](p) denote the quantity in brackets evaluated at X = xp, Y=Y
Once the p-th approximation has been found, the (p+l)-th approxi-
mation is obtained by solving the following pair of linear

algebraic equations for xp¢1, Y

P.

p+l’

(p) - (p) - - -
”Vx’x] (Xgep = Xp) + l(vx)yl (Yo, = ¥p) (v (p)
(48)

((V (P) -
y) 3P (Ko - xg) + ((V}p}(l“’)(ywl = ¥) = =1V (p)
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The first approximation is X = ¥ = 0. The iterative procedure is

terminated when the induced velocity components at the approxi-
mate null point are both less in absolute value than a prescribed
value. This value is set at 0.00l.

3.2.5 Formation of the Vector Matrix of Influence
Coetficients

The velocities induced by the quadrilateral source
elements at each other's null points must be computed. This is

done under the assumption that the source density on each element
is of unit strength. The final result of this calculation is the
complete set of the velocities induced at each null point by
every quadrilateral element. This array may be thought of as a
"matrix of influence coefficients," the elements of which are
vectors in three-dimensional space.

The basic caluclation is the computation of the
velocity components induced at the null point of the i-th element
by a unit source density distribution on the j-th element.

The coordinates of the i-th null point xnp', an',
znp' are transformed into the j-th element coordinate system
obtaining Xppr Ynpr Znp. The transformation is accomplished by
means of Equation 33. The velocity components are evaluated from
Equations 40, 41, and 42. In these formulas X, Y, Z are replaced
by xnp' an, znp and Ek' N, are the coordinates of the corner

points of the j-th element.

In evaluating these velocity components, Vx and Vy
cause no trouble. The component v, requires special handling in
certain cases. As znp»o, Vi’° if the null point is approaching a
point in the plane outside the boundaries of the quadrilateral.
However, Vi*2w(Sign znp) if the null point is approaching a point

within the quadrilateral.

Due to round off error which occurs while making
the transformation from reference to element coordinate system,

znp may have small values with either sign and the calculation of
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vz will give a value different than what it should be (i.e., 0 or

2r). To avoid this error, the absolute value of znp is tested

before velocities are computed and, if it is less than some small
prescribed number (in this case it is the smaller diagonal/l1l00),

which is, nevertheless, large compared to the expected round-off

error, znp is set equal to zero and Vz is set equal to zero for

points outside the quadrilateral or equal to +27 for points inside

the quadrilateral. Another situation that may cause trouble occurs
when the slope of a side of the quadrilateral is infinite. To ;
avoid difficulties each of the quantities (£,-%;), (§3=€5) 0 (8 4-83), %
and (51-54) are tested to determine whether they are zero, and if 1
any one of them is zero, the two inverse tangents corresponding

to that side are set equal to zero., It should be mentioned that

the inverse tangents in Equation 42 are evaluated in the normal

range -7/2 to +w/2.

The in@uced velocity components Vx' Vy, Vz are in
the element coordinate system and must be transformed to obtain
the components V', Vy', Vz' in the reference coordinate system.
This is done by using Equation 33 where Vx' vy, v, replace X, Y,
2, respectively, in these equations, and vx', v.,', Vz' replace

] ] i Y
(x'=x), (¥'-¥), (3'-2,).

To obtain a set of linear lgebraic equations for
the unknown values of the source density on the elements, the
first step is to calculate the normal velocities induced at each
null point by the various elements, each of which is still
assumed to have a unit source density.

The normal velocity induced at the null point of

the i-th element by a unit source density on the j-th element is
o5

obtained by taking the dot product of Vij with the unit normal
vector of the i-th element 3?. Vi; is defined as the vector

velocity induced at the null point of the i-th element by a
unit source density on the j-th element. This induced normal
velocity is denoted Aij' It is given by

—p
A,. =V 2 « N, = “ixvx' + ni.v ' 4+ ng . (49)

ij ij i j'y zvz'
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The result is a scalar matrix whose elements are the normal
velocities induced at the various null points by the various
quadrilateral elements with unit source density. This matrix

is the coefficient matrix of the required set of linear equations,
since multiplying this by the column matrix of the unknown values
of the source density on each element gives a column matrix whose
elements are the true normal velocities induced at the null
points by the entire approximate body surface. The right hand
sides of the linear equations are the negatives of the normal
components of the onset flow at the various null points.

3.2.6 Designation of the Onset Flow

The onset flow is used to form a right hand side
for use with the coefficient matrix. The onset flow is designated
by the vector ﬁ:? and must be defined at each null point i. This
vector will be a spatially varying function for flows of finite
extent, It also varies with time for a deforming surface.
Presently, the loading model uses the simple onset flow model
described in paragraph 3.1.2 modified to include the effect of
the displacement velocity of the deforming blade. The components
of onset flow relative to the blade are given by

\' = Vt + Ux

® X
\'/ =V, + U (50)

oy b 4

“‘z = Uz

for all null points which lie under the projected area of the
impacting object on the blade. The onset flow is specified as

zero for all other null points. The onset flow velocity components,
given by Equation 50, are defined in the reference coordinate
system. For a blade analysis, the following reference coordinate
system is used.

The positive X direction is in the direction of
rotation of the rotor, the positive y direction is looking for-
ward along the axis of the engine, and the 2 direction is in the
plane of rotation of the rotor with positive 2 going from root
to tip. The X, Y, and Z directions are shown in Figure 2. 1In

Equation 50, U ., U, and U, represent the local deformation

y:
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velocity components of the blade and are supplied to the loading
model by the structural analysis program.

More sophisticated onset flow models have been
developed but have not as yet been incorporated into the loading
model. These more sophisticated onset flow models attempt to
take account the spreading of the jet as the impact surface is
approached and, thereby, give a better description of the pressure
distribution at the edges of the impact area. In Section 4, a
more sophisticated onset flow model is presented which is based
on two-dimensional jet theory.

3.2.7 The Linear Algebraic Equations for the Values of
the Surface Source Dersity

3.2.7.1 Formulation of the Equations

Now the values of the surface source
density on the elements will be obtained as the solution of a
set of linear algebraic equations. Recall that the source den-
sity is assumed constant on each quadrilateral element, Thus,
there are N unknown values of the source density, where N is
the number of elements formed from the input point. The total
normal velocity is required to vanish at the null point of each
element formed from the nodal points; therefore, there are N
equations for the N unknown values of the source density. The
total velocity induced at the i-th null point by all quadrila-
teral elements is |

N

J’
The normal component of the onset flow at the i-th null point
is the dot product of the onset flow vector and the unit normal

vector of the i-th element, i.e.,

(51)

\'4

4
oni ® P} T2 = 0y xVeay * DyyVay + By Ve, (52)

The total normal velocity at the i-th null point is the sum of
Equations 51 and 52. Thus the requirement that the normal velo-
city vanish at all null points gives the following set of linear
equations for the values of the source density
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N
j=1 '

By solving this set of equations a complete set of source den-
sities is obtained for this onset flow.

3.2.7.2 Solution of the Equations

If the impacted surface is perfectly

flat, all of the off-diagonal members of A.. are identically

zero and the solution of Aij is trivial;3 ;g matrix operations
are involved. For surfaces which are highly curved, the off-
diagonal elements are generally small compared to the diagonal
elements and matrix iterative solution procedures such as the
Seidel procedure4 must be used. This procedure gives good con-
vergence and requires less computer time than direct elimination
methods particularly when more than 200 elements are used. The
Seidel procedure did not prove to be a very good method, however,
for blade analysis. Difficulties with convergence were experi~-
enced with blade surfaces which were nearly flat before impact
but which became slightly deformed and concave during the early
stages of impact. In this situation many of the off-diagonal
elements are of the same order of magnitude as diagonal elements
and are not all of the same sign. Also, because of program
storage limitations imposed on the loading model, it was not

feasible to consider more than 80 to 100 elements. Therefore,

a direct elimination method of solution is used to solve the

; equations. The method used is Gaussian elimination with pivotal
condensation. A subroutine called CSOLVR, which was developed
by one of the authors (Boehman), is used in the loading model
computer program. This subroutine was originally develcoped to
solve difficult linear systems such as those encountered in
laminar, compressible boundary layer stability theory, and in
large systems of chemical equilibrium reaction equations solved
by the Newton-Raphson search procedure.

3.2.8 Calculation of Total Flow Velocities and Pressures

Once the values of the surface source density have
been found, the actual flow velocities at the null goints are
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calculated by multiplying the elements of the "matrices of
influence coefficients,” which are the induced velocity components
that were calculated assuming a unit value for all source densi-
ties, by the corresponding true values of the source densities,
and summing all such products that are appropriate for the null
point in question. To the results of this summation must be

added the proper components of the onset flow. Recall that the
velocity induced at the null point of the i-th element by a

unit source density on the j-th element is the vector Gij with

components Xijr Yij' Zij corresponding, respectively, to Vx',
L

Vy ’ Vz'. Let the total flow velocity at the null point of the

i-th element be denoted by the vector Gi with components Vix’

viy' V;z+- These components are given by

Vig = i‘ 25993 * Vax
=1

=1 _
N

Viz ® 24 U373 " Ves
=

These equations are evaluated for every null point. The magni-
tude of the velocity vV, at each null point is then computed from

2
Vi 'Vvix * Viy

and finally the pressure at each null point is computed. The

2 2

+ viz (55)

loading pressure at any null point is based on an application of
Bernoullis equation in the form

Pi = 5 0p(Vag® = V; %) (56)

where V g in this equation is defined as the magnitude of the
onset flow evaluated at the coordinates of the center of impact.

With the simple onset flow model, negative
pressures will be obtained for flat or nearly flat surfaces at




null points lying just outside of the projected area of the
slice on the blade.3 This occurs because the tangential velocity
induced by an element in its own oplane approaches infinity at
the edges of the element. When the surface is flat, or nearly
flat, the value of the source density for all null points lying
outside of the immediate impact area is zero so that the net
tanyc..tial velocity computed for these null points is heavily
biased toward the tangenti-~l velocity induced at these null
points by their ne:.est neighbor elements which lie under the
projected area of the slice on the blade. 1In *he current ver-
sion of the loading model, if a negative pressure is computed,
the negative value is ignored and a zero pressure is assumed
instead.

3.2.9 Summary Description of Coupling Between Loading
Model and structural Dynamic Analysis

In loading used for any arbitrarily shaped impact
surface, the impact area is divided into small flat elements,
and a uniform distribution of sources is assumed to cover each
area. At the beginning of impact, an initial .pressure distri-
bution is computed for the undeformed blade. During an impact
in which local deformation takes place, the deformed shape of
the impact zone is calculated in the dynamic structural analy-
sis. After significant deformation has occurred, the geometry
of the impact zone is provided to the loading model. The loading
model is then used to calculate a new pressure distribution,
As the structural analysis calculation proceeds, the local shape,
the location, and the velocity of the impact area are updated
and passed to the loading model at appropriate time intervals.
The loading model, in turn, provides updated pressure distribu-
tion information for the structural response computation. The
loading model is fully interactive with the structural response
calculation. The duration of the impact is computed by keeping
track of how much of the slice has been consumed during each
time interval.

The loading model is capable of detailed inter-
action with the structural response model and of dealing with
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target translation, rotation, and local deformation. The load-
response coupling modelled in this formulation is capable of
accurately predicting both overall target response and local
deformation.

The principal limitation of the loading model, in
its present form, is that it does not include transient effects
of shock wave formation and decay. 1In birds, porosity appre-
ciably reduces the peak pressures without significantly affecting
3/5 1n addition, impact obliquity reduces
the relative importance of shock pressures. Therefore, it is
not obvious that neglect of the shock aspects of bird impact on
blades is a significant deficiency. Nevertheless, efforts are
currently being made to develop a simple, first order model
for predicting the build up of the peak pressure to the Hugoniot
pressure3'5' and the decay of pressure from the peak pressure to
the steady flow pressure by the combined action of release waves
in the soft body and motion induced in the target material by

steady flow pressures.

the shock wave transmitted through the target material.

Preliminary work along these lines shows that the
main effect of shocks during impacts on thin blades is to impact
an initial deformation velocity to the blade material exposed
to the slice. Thus, one approach to handling shock effects may
be to simply model the initial impact process by imposing an
initial velocity boundary condition to the blade material in
the structural analysis. The appropriate initial velocity to
be imported can be computed from a combination of Hugoniot
pressure variables, dimensions of the slice, thickness of the
blade material, and compressibility properties of the blade
material.

i
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SECTION 4
FOD LOADING MODEL COMPUTER PROGRAM

In this section the procedures used to translate the theo-~
retical aspects of the surface singularity technique into a
working computer program are presented. The input data and
program options are described. Some details are given on how
the basic loading model is interfaced with finite element
structural analysis programs. Some results obtained with the
loading model in the form of pressure distributions are presented
along with comparisons to experimental results.

Some further theoretical developments associated with
improved onset flow models are also presented. In particular,
working equations for an onset flow model based on two-dimensional
oblique jet impacts are developed and presented.

The loading model is set up so that non-slicing impacts
can be considered as well as slicing impacts. No detailed
experimental data, particularly pressure distributions, are
available for slicing impacts. Thus, a non-slicing impact
capability was created for the loading model to validate
the output of the loading model computer program. Also,
non-slicing capability was desired for investigating FOD
impacts on non-rotating turbine engine components as well as
aircraft external surfaces.

4.1 REFERENCE COORDINATE SYSTEM

While in principle any Cartesian coordinate system can be
used with the surface singularity technique as developed in
Section III, it was nevertheless found to be advantageous to
work with a specific coordinate system for handling slicing
impacts.

The coordinate system used in this report is one commonly
used in the aircraft engine industry and is defined as follows:
the Z axis is taken in the plane of rotation of the rotor with
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z = 0 taken at the axis of rotation with positive z pointing

from root to tip, the Y direction is parallel to (but not
coincident with) the axis of rotation of the rotor and is

positive when directed from the rear of the engine toward the

front or inlet. The X axis is in the plane of rotation of the
rotor and is perpendicular to the Z-axis. The positive x direction
is defined so as to give a right-handed coordinate system. For

a rotor viewed from the rear of the engine looking forward,
positive rotational speed is defined as clockwise rotation.

Thus, for positive rotational speed, the positive x-axis points

in the direction of rotation. 1In short then, z is the radial
direction, y is the forward direction, and x is the tangential
direction. The origin of the coordinate system, except for

2 = 0, is not fixed to a specific location. With the coordinate
system so defined, the program user can,in most cases, input %
a blade shape directly from design drawings generated in the i
aircraft engine industry.

4.2 DESCRIPTION OF INPUT DATA REQUIREMENTS

The primary input variables have already been defined in
Sections II and III. They are restated in this section along
with the symbols used in the loading model to define these
quantities.

4.2.1 Input Data for Slicing Impacts

There are three options for slicing impacts. The
input variable ISLICE is used to define the type of cbject
being sliced. ISLICE = 1 denotes a bird, ISLICE = 2 denotes an
ice sphere, and ISLICE = 3 denotes an ice slab. The definitions
of the input variables for a slicing impact of a bird are
given in Table III. Most of the impact variables defined in
Table III are used in all three options. For an ice sphere
only the definitions of Vb and Wb are changed. For an ice
sphere, V is taken as the axial speed of the sphere (aircraft
speed) and WS is the mass of the ice sphere. For an ice slab the
user must input for vb the axial velocity of the slab relative
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TABLE III
DEFINITION OF INPUT DATA FOR SLICING BIRD IMPACT.

Symbol Used Symbol Used

variables in Report in Computer Program
No. of blades per stage N NBL
Blade rotational speed (rpm) n RPMY
Axial speed of the bird VB VB
(user generally specifies
this as the aircraft
speed)
Bird weight Wb WB
Radius on rotor at which zi RI
impact occurs
Time at which impact begins - TIM
Coordinates of blade lead- - (XL, YL)
ing edge at zi
Coordinates of blade trail- - (XT, ¥YT)
ing edge at zi
No. of chordwise cuts on the NC NC
blade for the purpose of
generating a grid svstem
No. of spanwise cuts on the NS NS
blade for the purpose of
generating a grid system
Mass density of the bird oL RHOB

to the engine nacelle (a number generally less than the aircraft
speed but greater than zero). Also for an ice slab the user must
supply as input the length of the ice slab (BL) and the height

of the slab (DB); where height denotes how miuch of the span of

the blade is to be exposed to the slab. The thickness of the
slice taken out of the slab is not an input number but is taken
to be the maximum possible slice width, h, computed in equation

-
I e

The coordinates of the leading and trailing edge
points defined in Table III are used to define the blade orienta-
tion angle § defined in Figure 2.
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1

§ = tan — [(YL-YT)/(XL-XT)] 57

4.2.2 Input Data for Non-Slicing Impacts

For non-slicing impacts, a right circular cylinder
with L = 2D is assumed. A value of one for NEL should be inputed
to signal that non-slicing impact is occurring. The location
of the center of impact (XI, YI, ZI) is then read in as input
data along with the three velocity components of the projectile.

4.3 MAJOR PROGRAM VARIABLE NAMES

A list of the major program variable names is given in
Appendix A.

4.4 INTERFACING DETAILS

In the present version of the loading model program the
following decisions are assumed to be made in the structural
analysis program:

(1) the time at which a pressure distribution is to be

computed by the locading model

(2) the number of chordwise cuts NC and spanwise cuts NS
to be made on the blade for the purpose of generating
a grid system on the impact area

(3) the surface nodal locations where pressures are to
be computed

Whenever the structural analysis computer program decides
that an updated pressure distribution is required, the above
information is supplied to the loading model computer program
(called BPRESS). The displacement velocities at the surface
nodal locations where pressures are to be computed are also
supplied to BPRESS. With this information BPRESS computes the
following: first, the corner points of the plane quadrilateral
elements are computed according to the scheme outlined in
Section 3.2.1. Then the element on which the center of impact
occurs is determined. This is done by searching for the one
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surface element which is intersected by the line defining the
path of the axis of symmetry of the impacting object. Next

the velocity of the impacting object relative to the element

on which the center of impact occurs is computed taking into
account the displacement velocity of this element. This relative
velocity is used to define the instantaneous dynamic pressure

of the impact and is also used to compute the amount of impacting
object consumed during the time interval between the previous
call to BPRESS and the current call to BPRESS (DLC). The amount
of object which is not yet consumed (BLR) and the (current best
estimate of the time at which the entire object will have been
consumed (TERM) are computed.

The vector matrix of influence coefficients are next
computed (Section 3.2.5) followed by computation of the onset
flow. The onset flow computation includes the effect of dis-
placement velocities. The system of linear equations which
determine the set of source densities (Section 3.2.7) is then
solved. The final major computation in BPRESS is the computa-
tion of flow velocities and pressure at the surface nodal points
which are approximately equivalent to the null points. The
pressﬂies and the estimated time of impact durations are then
returned to the structural analysis executive routine.

4.5 PRESSURE DISTRIBUTIONS OBTAINED WITH THE LOADING MODEL

4.5.1 Obligun Ilmpacts on Rigid Surfaces

At the present time, steady-state experimental
pressure distributions are available only for real and
substitute birds impacting on rigid flat plates. Figure 9
shows a comparison between computed and measured steady-
state pressure distributions for a 45 degree impact angle. The
distribution shown in Figure 9 is along the major axis. Figure
10 shows the same type of comparison but for a more oblique
impact (25 degrees). Figure ll shows pressure distributions
along the minor axis for 45 and 25 degree impacts. The
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computed results shown in these three Figures are based on the
simple onset flow model which was described in Section 3.1.2.
The limitations of this simple onset flow model are clearly
evident from these figureé where it is observed that in the low
pressure region, near the edges of the projected area of the
bird on the plate, the computed pressure distribution is not

in agreement with the measured distribution. However, it can
be seen that the agreement between theoretical and experimental
results is excellent over the impact region where the pressures
are large. Many attempts have been made in the course of this
effort to develop better onset flow models which lead to
improved pressure distributions at the edge of the projected
area of the projectile on the impact surface. Except for normal
or nearly normal impacts, no reasonably simple onset flow model
has been discovered which yields better overall results than the
very simplest model, that is, the one used to generate the
results shown in Figures 9, 10, and 1l.
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4.5.2. Normal Impacts on Rigid Surfaces ’

Figure 12 shows the pressure distribution obtained
with the loading model using the simple onset flow description.
Experimental data points are also shown in Figure 12 along
with the theoretical pressure distribution for a two-dimensional
jet. The results shown in Figure 12 clearly show that the
simple onset flow description is not adequate for normal impacts.
The total force impacted to the impact surface corresponding
to the simple onset flow is only about one-half of the theoretical !
value of pVbA where A is the cross-sectional area of the pro-
jectile. The pressure distribution for a two-dimensional jet
led to a gross over-estimate of the total impact force.

An approximate theoretical pressure distribution for an axisym-
metric normal jet impact developed by Schach (7

is also shown
in Pigure 12 along with Schach's measured pressure distribution.

In the next section an improved onset flow model
based on a two-dimensional jet theoretical solution is preseﬂted
which yields excellent agreement with experimental pressure
distributions.

4.6 AN IMPROVED ONSET FLOW MODEL FOR NORMAL IMPACTS

The inadequacy of the simple onset flow description for
normal impacts is due to the fact that the spreading of the
edge of the fluid jet as it approaches the impact surface is
not taken into account. For oblique impacts this is not a
serious shortcoming since the major portion of the jet is
deflected from its oncoming path on that portion of the impacted
area which lies within the projected area of the projectile on
the impact surface. For normal impacts, however, much of the
momentum transfer occurs outside of the projected area of the
projectile on the impact surface.

Figure 13 shows a comparison of the jet boundary free
streamline shapes for normal impact of two~dimensional and
axisymmetric jets. This figure shows that the turning of an
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axisymmetric jet is much more abrupt than the turning of a two-
dimensional jet. From Figure 13 it is observed that the two-
dimensional jet boundary streamlines are not altogether dissim-
ilar from the axisymmetric jet if the Y axis of the two-dimensional
jet is shifted downward by an amount equal to the jet half-width.
This observation led to the following question. Suppose the two-
dimensional jet velocity field evaluated at Y/a in the vicinity
of 1 was used as an onset flow description. Is it possible to
find some value of Y/a that has a velocity field which when used
as an onset flow description would yield a pressure distribution
similar to the axisymmetric pressure distribution? Figure 14
shows pressure distribution that correspond to various values

of Y¥/a (denoted by L1 on Figure 14). From comparison of Figure
14 to Figure 12, it can br seen that the pressure distribution
for Y/a (Ll) 1.25 is remarkably close to the measured axisym-
metric pressure distribution. Thus if the two-dimensional jet
velocity field evaluated at a non-dimensional distance from the
impact surface of Y/a = 1.25 is used as an onset flow descrip-

tion, a reasonably accurate pressure distribution for axisym-
metric normal impacts on rigid flat plates can be obtained. 1In
the present version of the loading model computer program, this
improved onset flow description is used instead of the simple
onset flow description when normal impacts are considered. The
theoretical solution for the velocity field of the two-dimensional
jet impacting on a rigid flat plate at an incidence angle B8 is
presented in Appendix B, equations B~8 andB-9. For a normal
impact (8 = 90 degrees), it was found that, at Y/a = 1.25, the
normal component of velocity is approximately constant over the
jet width and is equal to

V' = 0.5 58
and the tangential velocity distribution given by
U' = 0.9 (1 - e ~(X/3), 59

Equations 58 and 59 are used to describe the onset flow velocity
field for normal impacts rather than the exact two-dimensional
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velocity solution, which must be solved iteratively.

When using the loading model for normal impacts, the user
must define the impact area to be at least 1.8 times the
projectile radius in order to obtain a pressure distribution,
which gives a total impulse within 90 percent of the theoretical
value.

One may question the need of using the loading model
computer program for normal impacts of cylindrical projectiles.
Why not simply use the pressure distribution for axisymmetric
jets given in Figure 12. For normal impacts on rigid flat

surfaces an emperical equation for the pressure distribution
would certainly be a much simpler approach. However, for normal
impacts on deformable surfaces one cannot use a rigid flat

plate pressure distribution to describe the loading.' The
present improved onset flow model using equation 59 to represent
the velocity tangent to the deformed surface has been found to
correctly describe the loading effects produced by pocketing

or cupping of the impact area on deforming surfaces.
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4.7 ONSET FLOW MODELING FOR OBLIQUE IMPACTS

A large amount of effort has been expended in attempts to

generate improved onset flow models for oblique models. Much of

this effort has centered on using two-dimensional jet theoret-

ical velocity field solutions in one form or another to model

the onset flow. While it has been possible to use two-

dimensional jet theory to develop onset flow description, which

yield pressure distribution that agree with the measured pressure
distributions for obligque impacts on rigid flat plates than is i
possible with the simple onset flow model, these efforts have |
not produced acceptable results for the following reason. The |

programming and computer time required to compute the improved
onset flow velocity field becomes very large, to the point

where the onset flow computation becomes the major computation.

The simple onset flow model yields acceptable results for
impact angles less than or equal to 45 degrees. For normal or
nearly normal impacts (90 and 55 degrees) the improved onset flow
model discussed in the previous section has been found to yield
acceptable results. Thus at the present time no relatively
simple onset flow model is available for impacts over the 45
to 60 degree incidence angle range. At the present time this
is not a serious limitation to the scope of the work of the

contractual effort since angles of incidence in the 45 to 75
degr.e are not encountered in high performance turbine engines
(see Tables I and II for APSI and F-10l engine Bird-Blade
Incidence angles).

4.8 ADDITIONAL PROGRAMMING FOR NON-SLICING IMPACTS

As was mentioned in Section 4.2.2, when the loading mocel
is used for nun-slicing impacts, the location of the center of
impact and velocity components of the projectile are specified
by the user. The methods used to treat this type of impact
are identical to those developed by the authors of this report
for treating impacts on aircraft transparencies and are dis-
cussed in Appendix C.
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APPENDIX A
SYMBOL DEFINITION

In this appendix the symbols used in the program will be

defined and related to the equations derived or listed in

Section 3.

N : number of elements
XN(I),¥YN(I),Z2N(I) X, ¥, and Z coordinates of the
input points defining the shape
of the impact surface,

Ux(I),0¥(1),0zZ(1)

X, ¥, and Z components of the
velocity at the null point

X(1,I),X(2,1),X(3,I),X(4,1)

X coordinates of the corner points
forming the element

Y(i,1),¥(2,1),¥(3,1),Y(4,I) Y coordinates of the corner points q

forming the element

2(1,1),2(2,1),2(3,1),2(4,1) Z coordinates of the corner points
I forming the element

‘ T1X,T1¥,T1Z : components of the diagonal vector
fi joining corners 1 and 3
T2X,T2Y,T2Z : components of the diagonal vector
fé joining corners 2 and 4
XN1,¥N1,2N1 : components of the cross product
vector N of the two diagonal
vectors
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UNX,UNY,UNZ

XAV, YAV, ZAV

p1,D2,D3,D4

XPl,XP2,XP3,XP4

YPl,YP2,YP3,YP4

ZP1,72P2,2P3,7P4

Tl

TP1X,TPlY,TPl2

TP2X,TP2Y,TP22

.0

(1]

(1]

components of the unit normal
vector n

coordinates of the average point
of the four corner points of the
element

signed projection distance of the
four input points used to form

an element into the plane of the
element '

X coordinates of the corner points
of the gquadrilateral element in
the reference coordinate system

Y coordinates of the corner points
of the guadrilateral element in
the reference coordinate system

Z coordinates of the corner points
of the gquadrilateral element in
the reference coordinate system

magnitude of the diagonal vector fl

components of the unit vector tl in
the reference coordinate system used
to define the element coordinate systen

components of the unit vector Ez in
the reference coordinate system used
to define the element coordinate system




Y

ZETAPl,Z2ETAP2,2ETAP3,2ETAP4

ZETA coordinates of the corner points
of the quadrilateral element in the
element coordinate system using the
average point as origin

ETAPl ,ETAP2,ETAP3,ETAP4 ETA coordinates of the corner points
of the quadrilateral element in the
element coordinate system using the
‘average point as origin

ZETAOR,ETAOR

coordinates of the centroid in the
element coordinate system using
the average point as origin !

2ETALl,2ETA2,2ETA3,ZETA4 ZETA coordinates of the corner

points of the quadrilateral ele-
ment in the element coordinate
system using the centroid as
origin

ETA coordinates of the corner
points of the quadrilateral ele-
ment in the element coordinate

ETAl,ETA2,ETA3,ETA4

system using the centroid as
origin

X0,Y0,20 coordinates of the centroid of

the quadrilateral element in the
reference coordinate system

XX,YY,22 coordinates of the calculated

null point in the element coor-
dinate system W
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Dl12,D23,D34,D41 length of the four sides of the

quadrilateral element which are

(1]

given in Equation 43

o

R1,R2,R3,R4 quantities defined by Equation 45

Ull,U022,U033,044 the X components of the velocity

induced by a side of the quadrila-

.o

teral element at a null point

XUl,¥YV],zZwWl X, Y, and 2 components of the

velocity induced by a guadrila-

teral element at a null point
v11,v22,V33,v44 the Y components of the velocity
induced by a side of the quadri-
lateral element at a null point

W1ll,W22,W33,W44 Z components of the velocity
induced by a side of the quadri-

lateral element at a null point

R1IR2X,R2R3X,R3R4X,R4R1X

quantities used to evaluate the

R1R2Y,R2R3Y,R3R4Y,R4R1Y partial derivatives of vx and Vy
DD12,DD23,DD34,DD41 (Equation 48) with respect to x
and y
VXX,VXY : partial derivatives of the X com-

ponent of the induced velocity Ve
with respect to X and ¥

VYX,VYY partial derivatives of the Y com-
ponent of the induced velocity

VY with respect to X and Y
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DELX,DELY

change in value of the coor- ir
dinates of the null point pro-
duced by one iteration in the
solution of the non-linear
equations for the null point
XPNP,YPNP, ZPNP coordinates of the null point of
the quadrilateral element in the
reference coordinate system

XNP, YNP, ZNP coordinates of the i-th null
point in the j-th element coor-

dinate system

ZE21,2E32,%2E43,%2E14 X components of the length of the
sides of the guadrilateral

element

ET21,ET32,ET43,ET14 Y components of the length of the
sides of the gquadrilateral

element

El,E2,E3,E4 quantities defined by Equations
Hl1,H2,H3,H4 44, 46, and 47
M12,M23,M34,M41

UPX,VPY,WPZ

velocity components induced at

the null point of the i-th element
by a unit source density on the
j=th element in the reference
coordinate system

AN(I,J) induced normal velocity at the
null point of the i-th element by
a unit source density on the j-th
element (Equation 49)
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VINFX,VINFY,VINFZ components of a uniform onset

flow in the reference coordinate

system
ON(I) normal component of a uniform
onset flow at the null point of
the i-th element (Equation 52)

S(I)

source density on the i-th
quadrilateral element

T1,7T2,7T3 components of the velocity
induced at the null point of the
i-th element by a source density
S(J) on the j-th element in the

reference coordinate system

ul,vyi,wl components of the total flow

velocity at the null point of the

i-th element in the reference

1
coordinate system
VEL : magnitude of the total flow velo-
city at the null point of the
i-th element h
CP : pressure coefficient at a null
point
P(I) : pressure magnitude at the null

point of the i-th element
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APPENDIX B
TWO-DIMENSIONAL ONSET FLOW MODELING

To find the exact source density on the quadrilateral
elements, the onset flow needs to be specified. A two-
dimensional onset flow was modeled and found adequate to use
with axisymmetric jet impacting on flat surfaces at oblique
angles. The onset flow is assumed to be a two-dimensional jet
flow bounded by free streamlines, impacting on a flat surface.
A free streamline is a streamline which separates fldid in
motion from fluid at rest and is a line of constant speed and
pressure. To completely specify the onset flow, the boundary

of the jet, which is composed of free streamlines, along with the
velocity field and the stagnation point need to be derived.

B-1 DERIVATION OF VELOCITY FIELD EQUATIONS

The velocity on the free streamline is complex and denoted
by v and written as: .
v=Uu-liv
(B=-1)
Milne-Thomson expressed 2, where 2 = x + iy, in terms of v , of
two impinging jets Al and Az, meeting and branching off into two
other streams B1 and 82 (see Figure B-]1) as:

UM e (=) e 22 oq (1- =
Zs - 3°| Iog(l o, )4-02 log o,

K K
- —L'og(-—v-)- _2 |°g (l_L)
b, b,/ b b2

where hl’ hz, Kl, and R, denote the breadths at infinity of Al, A,
Bl' and 82: and a = u, a, = Uela, bl = Uels, and b2 = UexY. 3

is the angle between Al and Bl’ & is the angle between Al and Az,

(B=2)

and Y is the angle between Ay and B,. The expression for 7 shows
that the motion is reversible. For our purposes, consider the
direct impact of two jets with the same asymptote as shown in
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Figure B-2. Assume that Al and Az are two uniform streams, then
the inflow and outflow must balance to preserve continuity.

h, +h, =K, + Ky (B-3)

From conservation of momentum in the x and y directions we
obtain:

h,+hycosa-K,cos 8 -K,cosr=0
h, sine - K, sing =K,sin r=0 (B-4)
Now it is clear that a symmetrical solution must exist. Thus

K|=K2' x=T . =2T-3

From Equations B-4 and B-3

h,-h
Cosg = ——2
Ki+Kz
and hy + By = 2k,

Solving for hl and h2 we found that
hy = K, (1+ cosp)
ho = K; (I - cos g8)

Substituting these values in the expression of 2 in Equation B-2

(B=5)

ZK. (08 )10 1~ 1) cos ) g1+ 22

(B=-6)

'T|"E'°g("3;iiza) '(2|vr'ﬁ)'°g(' Ue_n(Z??_B_))(

69

eem o = s




/ Z - PLANE
B

Figure B-1l. Z-Plane

Figure B-2. Two Jets with the Same Asymptote Impinging
Directly
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From reversibility and symmetry, it is obvious that solving

Equation B-6 for u and v will give us the onset flow needed.

Non-dimensionalizing the velocities u and v by the magni-
tude of the impacting €flow U, we get:

K Vo Vo
Z= 7' Iog[: — :ﬁ ] + cos B Iog[(l-u +iv)<|+u-iv)]
-(cos B -isin ) LI-(u" iv')(cos B-isin B)]
- (B=7)
(cos B+i sin [3) I-(u'-iv')(cos B +i sin B)]
where u'= u/U and v' = v/U. Rearranging Equation B-7 and
equating it with 2 = x + iy gives:
X_ .2, WP
W2 " 7 | e

WJM')’% z

V(I+v sin B-u cos BR+(u'sin B +v'cos B2

+ cos B log|~

- cos Blog\/(l -v'sin B-u'cos B)?(v'cos B-u sin BF |
[(u' sin B +v'cos B)]

L(l-u'cosB-l-v' sin B)
= tar [(v' cos B - u'sin B)}

(I-u'cos B-v'sin B)

- sin B tan
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-u

-v' ) (B-9)
|+u

;):75=7r2' tcﬁ'(—li_;-r)- tcnl<|+' )'*'COS ﬁ[fﬂf‘-l<Tv.—c>

+ tan’ (

- tan <u sin B+v'cos B ) ol (v'cos B-u sin B >]

|-u'cos B+v'sin B [-u'cos B-v'sin 8

sin 8 [Iog (I+v'sin B-u'cos B)%+(u'sin B +v'cos B)°
(1-V' sin B -u'cos B)2+(v'cos B-u'sin B)3 J

Now the velocities u' and v' can be calculated, for any point
within the boundary with coordinates x and y, by solving simulta-
neously the two non-linear Equations (B-8) and (B-9). These
equations are solved by means of an iterative procedure.

The iterative procedure is as follows. Let U'p and

V'p denote the p-th approximation of the velocity components u'
and v' of any point with known coordinates x and y. The (p+l)-th

approximation is obtained by solving for U' and V! in the
P+l

p+l

pair of linear algebraic egquations

(P) ' '
<vp+| - vp> {B-~10)
(P)
o)




The iterative procedure is terminated when the functions § 1 and
52 are both less in absolute value than a small prescribed
value., The iterative procedure replaces the non-linear Equations
(B-8) and (B~9) by linear Equations (B-10), whose coefficients
are the derivatives of the non-linear functions. In Equation (B-

10) 51 and 52 are non-linear functions of U' and V'.

') = 2 )] (1= + 2
8 (V) = s — lo [ u
! k/2 7 )2 99 (P2
+ 5 cos B [Io _&-dfw‘%]kl r ) v V.Z—]ﬁ
2 ° (I4+u2+v'2+2v'sin B-2u'cos B

2 2 ' . (B-11)
- log(l+u +v - 2vsin 8-2ucos B)

24 sin B-Z(u’2+v'2) cos B sin B8 }

. -
- t
sin £ tan [I-(u’z-i-v'z)(sinzﬁ-coszﬁ)‘Zu'COS R

y 2 \sinpB o [I+u2+\f2+2v sin B-2u cos B ]
kj/2 ” 2 l14ud+vE-2y sin B-2u cos 3

+ cos B tan"[——é——izuv : )]-tan"[' ZYCO.S 5-2uv [3}

84u, V)=

I-(U=v | +u2-v'2-24 cos

X 2v' ]
+ tan , :
[ I- (u+v2) | (312
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The convergence is fairly rapid but care should be taken while
evaluating the arc tangents. They should be evaluated between - T
and 7.

B-2 BOUNDARY OF THE JET

Consider the flow described in Figure B-2, let the x-axis
be along the line of impact and the origin be the stagnation
point of the two flows when they meet and branch into a 90 deéree
angle. 1If we regard the streamline y = 0 as a rigid barrier, we
will get a two-dimensional jet flow impacting on an infinite
plate at an oblique angle, which is the case we are studying
(Figure B-3) and lets divide the flow in two regions, Region 1
from the centerline of the jet toward the positive x-axis and
Region 2 toward the negative x-axis. On a free streamline, the
complex velocity

v = U e-ib (B-13)
If we substitute this in the expression for 2 in Equation (B=-2);
and equate the real and imaginary parts, we get the coordinates
(x,y) of a point on the free streamlines expressed in terms of the

parameter 8. Substituting in 2 we get:

Z= -_"-r-’ -'2— - h, ae o+ K, Be.iﬁ'*' kz?’e.i hy Iog(sin g)
| . (B-14)
+h, &% Jog (sin i;'_‘*_) - k, giR Iog(sin i‘g_ﬁ_)

- k& oty
k, €7 log <sm >
Substituting the values of hl, hz, Kl' K2,<1and‘(, calculated
from Equations B-3, B-4, and B-5 into Equation B-14 will give us
the expression for Z of interest in our problem, which is:
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Z = K |og< | ton(-—g->>+ cos 3 Iog(i sir;& )
+(cos B-isin --Z)i+log[-i 5‘"[&'%‘(%' §)]
(o E*ﬁ 2h g( cos[(%%+<%-%]>J

- 2c0s B[La@ + og - sm[(% - Z)-(’I-. ] g)DJ 15

In region 1 © is between - T and -(27-B), let X = =T-8, then
@ = -T-x and X/2 will be between zero and 7/2 minus g/2. By
substituting & by its value in Equation (B-15) we get:

Z= %}nog <| cot -’£—>+ cos B |og< 2") (cos B-i sin 3){(3—).
R

ol + 3 -6 2]

Using trigonometric identities and equating¢ I to x + iy we get:

X_ 2 | (' x)+ ‘ sin X
w2 B sin B - log(tan =)+ cos B log| —=———7 (3-17)
(1100 )+ (1 L)xl-tonﬁ/z‘
Y. '2— =-Z cos B +sin B log T2 T2/ ivtanp72. (3-13
k/2 2 (l-t %)-P(Htan )l ~-tan5/2
2/ +tanPr2;
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For each value of X between zero and (7/2 - 8/2) we get the coor-
dinates x and y of a point of the free streamline. A better way
of writing the equation of the streamline is to calculate X in
function of y and substitute it in the expression for x. By
doing so we get:

X .- B » [ §-l+cos B
E-tan cot-z-tonh —4—»'( : )

S"'IB (B-19)
where y= X
k2
_2 . B m (§-lcos B
and X= = { B sin B-log|cot ?tcnh 2\ "sn g (3-20)

sin LZton [coi-rf-fcn 74‘ - I+COSB)_]

cos[Ztori [cot g tonh[ (7:;236 ]+ cos 8

+cos B log

From Equation B- 20we can tell that this free streamline has a

horizontal asymptote which is
Yy = 1 -cos B
since T tends to infinitv as Y approaches this value.

In region 2 8 is between -(27-8) and -27, let X = (27 -B) -8,
then & = -(27<B8)=X and X/2 will be between zero and B/2.
Repeating the same procedure used for region 1 we get:
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|=|

N
N|><

g)] +cos B !og[-iz-(-sinu-m)]

ki
Z= g )log [u cot(
' . . x

+<cos B-isin B)[(B- -Tér-) i +log | smx 2 B) ﬂ 21y

‘COS(-é--b—-

e

-2cosB[—i§'-B+log(isin-?-2(-).‘§ 1

Equating it to 2 = x + iy we get:

k),(/—2= %{(B-v) sin B-log [tan(—’—é— +12(— - -g)]-i- cos B[Iog —12-
1
+log [sin (B- x)} log [sin 22(- cos(—’é— + % - B)]

Y
k/2

(3-22)

X ]
%(H-cos ,B)- sin 3 log Lo:é_i%-‘e); (B-23)

2
T

then X in function of ¥ is:

y-I-cos B)
| sin B
cot B+ sin B e

(B-24)

X= 2cot.l
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this free streamline also has a horizontal asymptote:

g=l+cos B
As the parameter 6 approaches its limit, in either region 1 or 2
the free streamline will approach an asymptote. In region 1 as 6
approaches =(2w-8), x will approach (r-8). Let x =7 -8-¢, and
substitute it in Equations B-1l6, then take the limit as e+0 to
get the equation of the asymptote. Substituting the value of y in
the expression for X and ¥ we get:

as ¢-+0

X . 2 : ) (m B |
k2 ™ smBlogton<2 5 f+cos Blog—-

(B=25)
Y
K/2

. 3 -ZI(I-cos 3)+sin B log;l' +lo (I+ton_3)2

-(1-tan gj

Eliminate 1ln 1l/¢,

xy  wll-cosB)

- 2) 5 gin B-oalcot £ :
= = BSlnB bg(COt 2)+C0$B klsinB 25inB

X_
k/2

~log (|+tan —g—)z-<l-tan —g—)z (B~26)

Repeating the same procedure in region 2, we get the equation of
the asymptote in this region. As & approaches -(27-3), x will
approach zero. Let ¥ = € and substitute it in Equations B-2Z and
8-230
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2% (1+cos B)+sin B (1ogsin 8 kg %)

(B-27)

— % ) (B-mMsin B +log tong- +cos B ﬁog-'é- +2 logsin ,B-Iog(—z-)] 'i

...

Eliminate 1ln €/2

ﬁzﬁ—,—z,— (8- sin B + log tcxn-'g-
(B-28)

Y (I+cos B) :
+cosB[og—+2|ogsmB+k1;mE -% smB -logsin 8

The next step will be to find the x distance from the stagnation
point to the centerline of the jet. To do so we have to find the
intersections of the asymptote with the x axis and add to it the
length of the projected radius on the x-axis. (See Figure B-3.)

This distance from the stagnation point to the centerline A

of the jet is denoted by C, and is equal to
C=a+b

or
C=d-b

a is found by setting y equal to zero in Equation B-26, i.e.,

K (1-
ags= 7‘ ﬁ sin ﬁ'bg(COf §)+ (o{e}] B ,:' ; CSlo:BB) (B=29)

- log[(l+'°" §>2'<' mng ]
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and b is expressed as

kI
= ZSinB (B-30)
Then C becomes
- K T . J<;
CF ) Zsng " Bsin B‘*°9(¢°"é‘>‘ ?
(B-31) ;
o (l-cosB) 2 2 '
mw
v 3 g o) ()

The other form of C, i.e, C = d- b, is used to check the

correctness of Equation B-31.

Q.

Figure B-3. The Two Regions of the Flow
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APPENDIX C

APPLICATION OF LOADING MODEL TO BIRD IMPACT
ON AIRCRAFT TRANSPARENCIES

Bird impacts on aircraft transparencies are different
from bird impacts on other aircraft surfaces because
transparencies are not rigid structures under bird loading.
The transparency can significantly move and deform during a
bird impact. Therefore, it is necessary to consider the
windshield response. A transparency may, in general, respond
to impact in two distinctly different modes which are termed
locally rigid and locally deforming.

In the locally rigid case the windshield does not signi-
ficantly deform in the local area of impact. See Figure C-l.

The relative velocity and impact angle change during the
impact process, which results in significant changes in the
magnitude and direction of the force and magnitude of the
pressures excerted on the windshield.

BEFORE IMPACT DURING IMPACT

Figure C-1. Locally Rigid Windshield Response.
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In the locally deforming case the local region of impact
undergoes significant deformation including local changes in
angle and shape. See Figure C~2. The windshield forms a pocket
around the bird which results in greatly increase«d local loading
and deformation.

In both modes the potential flow model is best fitted to
sol : for the pressure distribution on the windshield during
impact. Then, with the use of a structural program, deformation
and velocity changes, for increments of time, can be calculated.
This procedure can be repeated till the bird is consumed.

C-1 ADDITIONAL INFORMATION NEEDED FOR THE APPLICATION OF THIS

LOADING MODEL TO TRANSPARENCIES

Initially the known parameters are the components of the
bird velocity and the impact point coordinates. Since the sur-
face is going to be subjected to rotation and deformation it is
important to know at all times on what element the impact has
occured., This will help calculating the relative velocity and
non-dimensionalizing the velocities with respect to this rela-
tive velocity. The direction cosines calculated from the bird
velocity components will give us the direction of the impact.

BIRD
\; a WINDSHIELD

Figure C-2, Locally Deforming Windshield Response
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Let VBX, VBY, and VBZ be the components of the bird velocity VR.

where: VR = vex2+ vey2-veZ2
then: cos a = VBX/VR
cos 8 = VBY/VR (C-1)

cos Yy = VBZ/VR
where a , 8, v are the angles that the velocity vector makes,
respectively, with X, ¥, and 2 axis. The next step is to find
the element where the impact occured. This is done by trans-
forming the components of bird velocity and the coordinates of
the impact point XI, YI, ZI into the element coordinate system.
This is accomplished by usinqg Equation 33. Then, try to find the
intersection of the line, passing through the impact point with
the direction cosines found earlier and the plane (X~Y) of the
element.

The equation of the line is:

X-X _Y-Y _Z-Z
cos a cosfB cosy (C-2)

where X', Y¥', and Z' are the coordinates of the impact peint in ﬂ
the element coordinate system,

The intersection point is found by setting 2 equal to zero.
The coordinates of the inters:ction point are:

. COSa
COS Y

. _, cosB
Y=Y-2 cosy

The impact point is on the element if the sum of the angles,
formed by joining the intersection point to the corner points of
the quadrilateral element, equal to 360 degrees. See Fiqure C=-3.

X=X-Z

(C=-3)
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The onset flow still needs to be specified. It is set
equal to zero outside the projection of the bird on the
windshield. Within the projection it is equal to the direction
cosine minus the velocity of the element, i.e.,

wa = COS a -~ Uxi

v‘my = cos 8 ~ Uyi

Vog ® €08 y = Uzi
where Vox' Vuy, and Voz are the components of the velocity in the
X, Y, and z directions and Uxi, Uyi, and Uzi are the components

of the non-dimensional velocity of the element.

A testing procedure is set to find what elements are out-
side the projection of the bird on the windshield, i.e., what
elements have an onset flow of zero.

This is accomplished by calculating the perpendicular
distance between the null point of the element and the line of
impact. If this distance is greater than the radius of the bird,
the element is outside the projection of the bird and the onset
flow is equal to zero. Let XI, YI be the intersection point of
the line of impact and the plane of the element, then the perpen-
dicular distance D is:

"_‘"\/d2+d2+ 2
| 2 d3 (C=6)
dl a ¢cosy - YI

d2 = XI » cos Y (C=7)
dy = cos a (-YI) - cos g (=XI)

where:

Now we have all the information needed for the application of the
loading model to bird impacts on aircraft transparencies.

85




REFERENCES

1. Wilbeck, J.S., "Impact Behavior of Low Strength Projectiles,"
AFML-TR-77-134, July 1973.

2. Allcock, A.W.R. and Collin, D.M., "The Development of a
Dunmy Bird for Use in Bird Strike Research," National Gas
Turbine Establishment, London, England, CP-1071, June 1968.

3. Barber, J.P., Taylor, H.R., and Wilbeck, J.3., "Bird Impact
Forces and Pressures on Rigid and Compliant Targets,"
Technical Report AFFDL-TR-77-60, May 1978.

4. Hess, J.L. and Smith, A.M.0., "Calculation of Non-Lifting
Potential Flow About Arbitrary Three-Dimensional Bodies,"
Douglas Aircraft Company, Report No. E.S. 40622, March 1962.
Also published in Journal of Ship Research, 8, No. 2, 22,
September 1964, pp. 22-44.

5. Bauer, D.P. and Barber, J.P., "Experimental Investigation of
Impact Pressures Caused by Gelatin Simulated Birds and Ice,"
University of Dayton Report UDR-TR-78-114, November 1978.

6. Milne-Thompson, L.M., Theoretical Hydrodynamics, MacMillan
Company, New York, Chapter 11, 1960.

7. Schach, Von W., "Umlenkung eines Kreisformigen Flussigkeits-
strahles an einer obener Platte Senkrecht Zur Stromugst-
richtung," (Deflection of a Circular liquid Jet on a Plane
Plate Normal to the Stream.), Ingenieur Archiv, Vol. VI,
1935, pp. 51-59.

8., Alexander, A. and Cornell, R.W., "Interactive Multi-Mode
Blade Impact Analysis,” NASA CR-159462, August 1978,

9. Hess, J.L. and Smith, A.M.O., "Calculation of Potential Flow
about Arbitrary Bodies," Progress in Aeronautical Sciences,
Vol. 8, edited by D. Kuchomann, Pergamon Press, 196/, pp. 1-138.

10, Hess, J.L., "The Problem of Three-Dimensional Lifting
Potential Flow and its Solution by Means of Surface
Singularity Distribution," Computer Methods in Applied
Mechanics and Engineering, 4(1974), pp. 283-319.




